#include "ggml/ggml.h"
|
|
#include "common.h"
|
|
#include <cmath>
|
#include <cstdio>
|
#include <cstring>
|
#include <ctime>
|
#include <fstream>
|
#include <string>
|
#include <vector>
|
#include <algorithm>
|
|
#if defined(_MSC_VER)
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
#endif
|
|
struct mnist_model {
|
struct ggml_tensor * conv2d_1_kernel;
|
struct ggml_tensor * conv2d_1_bias;
|
struct ggml_tensor * conv2d_2_kernel;
|
struct ggml_tensor * conv2d_2_bias;
|
struct ggml_tensor * dense_weight;
|
struct ggml_tensor * dense_bias;
|
struct ggml_context * ctx;
|
};
|
|
bool mnist_model_load(const std::string & fname, mnist_model & model) {
|
struct gguf_init_params params = {
|
/*.no_alloc =*/ false,
|
/*.ctx =*/ &model.ctx,
|
};
|
gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
if (!ctx) {
|
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
|
return false;
|
}
|
model.conv2d_1_kernel = ggml_get_tensor(model.ctx, "kernel1");
|
model.conv2d_1_bias = ggml_get_tensor(model.ctx, "bias1");
|
model.conv2d_2_kernel = ggml_get_tensor(model.ctx, "kernel2");
|
model.conv2d_2_bias = ggml_get_tensor(model.ctx, "bias2");
|
model.dense_weight = ggml_get_tensor(model.ctx, "dense_w");
|
model.dense_bias = ggml_get_tensor(model.ctx, "dense_b");
|
return true;
|
}
|
|
int mnist_eval(
|
const mnist_model & model,
|
const int n_threads,
|
std::vector<float> digit,
|
const char * fname_cgraph
|
)
|
{
|
static size_t buf_size = 100000 * sizeof(float) * 4;
|
static void * buf = malloc(buf_size);
|
|
struct ggml_init_params params = {
|
/*.mem_size =*/ buf_size,
|
/*.mem_buffer =*/ buf,
|
/*.no_alloc =*/ false,
|
};
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, 28, 28, 1, 1);
|
memcpy(input->data, digit.data(), ggml_nbytes(input));
|
ggml_set_name(input, "input");
|
ggml_tensor * cur = ggml_conv_2d(ctx0, model.conv2d_1_kernel, input, 1, 1, 0, 0, 1, 1);
|
cur = ggml_add(ctx0, cur, model.conv2d_1_bias);
|
cur = ggml_relu(ctx0, cur);
|
// Output shape after Conv2D: (26 26 32 1)
|
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
|
// Output shape after MaxPooling2D: (13 13 32 1)
|
cur = ggml_conv_2d(ctx0, model.conv2d_2_kernel, cur, 1, 1, 0, 0, 1, 1);
|
cur = ggml_add(ctx0, cur, model.conv2d_2_bias);
|
cur = ggml_relu(ctx0, cur);
|
// Output shape after Conv2D: (11 11 64 1)
|
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
|
// Output shape after MaxPooling2D: (5 5 64 1)
|
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
|
// Output shape after permute: (64 5 5 1)
|
cur = ggml_reshape_2d(ctx0, cur, 1600, 1);
|
// Final Dense layer
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.dense_weight, cur), model.dense_bias);
|
ggml_tensor * probs = ggml_soft_max(ctx0, cur);
|
ggml_set_name(probs, "probs");
|
|
ggml_build_forward_expand(gf, probs);
|
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
|
//ggml_graph_print(&gf);
|
ggml_graph_dump_dot(gf, NULL, "mnist-cnn.dot");
|
|
if (fname_cgraph) {
|
// export the compute graph for later use
|
// see the "mnist-cpu" example
|
ggml_graph_export(gf, fname_cgraph);
|
|
fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
|
}
|
|
const float * probs_data = ggml_get_data_f32(probs);
|
const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
|
ggml_free(ctx0);
|
return prediction;
|
}
|
|
int main(int argc, char ** argv) {
|
srand(time(NULL));
|
ggml_time_init();
|
|
if (argc != 3) {
|
fprintf(stderr, "Usage: %s models/mnist/mnist-cnn.gguf models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
|
exit(0);
|
}
|
|
uint8_t buf[784];
|
mnist_model model;
|
std::vector<float> digit;
|
|
// load the model
|
{
|
const int64_t t_start_us = ggml_time_us();
|
|
if (!mnist_model_load(argv[1], model)) {
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, argv[1]);
|
return 1;
|
}
|
|
const int64_t t_load_us = ggml_time_us() - t_start_us;
|
|
fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
|
}
|
|
// read a random digit from the test set
|
{
|
std::ifstream fin(argv[2], std::ios::binary);
|
if (!fin) {
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
|
return 1;
|
}
|
|
// seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
|
fin.seekg(16 + 784 * (rand() % 10000));
|
fin.read((char *) &buf, sizeof(buf));
|
}
|
|
// render the digit in ASCII
|
{
|
digit.resize(sizeof(buf));
|
|
for (int row = 0; row < 28; row++) {
|
for (int col = 0; col < 28; col++) {
|
fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
|
digit[row*28 + col] = ((float)buf[row*28 + col] / 255.0f);
|
}
|
|
fprintf(stderr, "\n");
|
}
|
|
fprintf(stderr, "\n");
|
}
|
|
const int prediction = mnist_eval(model, 1, digit, nullptr);
|
fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
|
ggml_free(model.ctx);
|
return 0;
|
}
|