#!/usr/bin/env python3
|
import sys
|
import gguf
|
import numpy as np
|
from tensorflow import keras
|
from tensorflow.keras import layers
|
|
def train(model_name):
|
# Model / data parameters
|
num_classes = 10
|
input_shape = (28, 28, 1)
|
|
# Load the data and split it between train and test sets
|
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
|
|
# Scale images to the [0, 1] range
|
x_train = x_train.astype("float32") / 255
|
x_test = x_test.astype("float32") / 255
|
# Make sure images have shape (28, 28, 1)
|
x_train = np.expand_dims(x_train, -1)
|
x_test = np.expand_dims(x_test, -1)
|
print("x_train shape:", x_train.shape)
|
print(x_train.shape[0], "train samples")
|
print(x_test.shape[0], "test samples")
|
|
# convert class vectors to binary class matrices
|
y_train = keras.utils.to_categorical(y_train, num_classes)
|
y_test = keras.utils.to_categorical(y_test, num_classes)
|
|
model = keras.Sequential(
|
[
|
keras.Input(shape=input_shape),
|
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
|
layers.MaxPooling2D(pool_size=(2, 2)),
|
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
|
layers.MaxPooling2D(pool_size=(2, 2)),
|
layers.Flatten(),
|
layers.Dropout(0.5),
|
layers.Dense(num_classes, activation="softmax"),
|
]
|
)
|
|
model.summary()
|
batch_size = 128
|
epochs = 15
|
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
|
score = model.evaluate(x_test, y_test, verbose=0)
|
print("Test loss:", score[0])
|
print("Test accuracy:", score[1])
|
model.save(model_name)
|
print("Keras model saved to '" + model_name + "'")
|
|
def convert(model_name):
|
model = keras.models.load_model(model_name)
|
gguf_model_name = model_name + ".gguf"
|
gguf_writer = gguf.GGUFWriter(gguf_model_name, "mnist-cnn")
|
|
kernel1 = model.layers[0].weights[0].numpy()
|
kernel1 = np.moveaxis(kernel1, [2,3], [0,1])
|
kernel1 = kernel1.astype(np.float16)
|
gguf_writer.add_tensor("kernel1", kernel1, raw_shape=(32, 1, 3, 3))
|
|
bias1 = model.layers[0].weights[1].numpy()
|
bias1 = np.repeat(bias1, 26*26)
|
gguf_writer.add_tensor("bias1", bias1, raw_shape=(1, 32, 26, 26))
|
|
kernel2 = model.layers[2].weights[0].numpy()
|
kernel2 = np.moveaxis(kernel2, [0,1,2,3], [2,3,1,0])
|
kernel2 = kernel2.astype(np.float16)
|
gguf_writer.add_tensor("kernel2", kernel2, raw_shape=(64, 32, 3, 3))
|
|
bias2 = model.layers[2].weights[1].numpy()
|
bias2 = np.repeat(bias2, 11*11)
|
gguf_writer.add_tensor("bias2", bias2, raw_shape=(1, 64, 11, 11))
|
|
dense_w = model.layers[-1].weights[0].numpy()
|
dense_w = dense_w.transpose()
|
gguf_writer.add_tensor("dense_w", dense_w, raw_shape=(10, 1600))
|
|
dense_b = model.layers[-1].weights[1].numpy()
|
gguf_writer.add_tensor("dense_b", dense_b)
|
|
gguf_writer.write_header_to_file()
|
gguf_writer.write_kv_data_to_file()
|
gguf_writer.write_tensors_to_file()
|
gguf_writer.close()
|
print("Model converted and saved to '{}'".format(gguf_model_name))
|
|
if __name__ == '__main__':
|
if len(sys.argv) < 3:
|
print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
|
sys.exit(1)
|
if sys.argv[1] == 'train':
|
train(sys.argv[2])
|
elif sys.argv[1] == 'convert':
|
convert(sys.argv[2])
|
else:
|
print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
|
sys.exit(1)
|