import os
|
import struct
|
import sys
|
|
import torch
|
from transformers import AutoConfig, AutoTokenizer
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
def bytes_to_unicode():
|
"""
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
The reversible bpe codes work on unicode strings.
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
"""
|
bs = (
|
list(range(ord("!"), ord("~") + 1))
|
+ list(range(ord("¡"), ord("¬") + 1))
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
)
|
cs = bs[:]
|
n = 0
|
for b in range(2**8):
|
if b not in bs:
|
bs.append(b)
|
cs.append(2**8 + n)
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
def count_model_parts(dir_model: str) -> int:
|
"""Returns the number of model parts in the model directory."""
|
num_parts = 0
|
for filename in os.listdir(dir_model):
|
if filename.startswith("pytorch_model-"):
|
num_parts += 1
|
|
if num_parts > 0:
|
print(f"Found {num_parts} model parts in {dir_model}")
|
return num_parts
|
|
|
if len(sys.argv) < 3:
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
|
print(" ftype == 0 -> float32")
|
print(" ftype == 1 -> float16")
|
sys.exit(1)
|
|
|
# output in the same directory as the model
|
dir_model = sys.argv[1]
|
# get number of model parts
|
num_parts = count_model_parts(dir_model)
|
|
# possible data types
|
# ftype == 0 -> float32
|
# ftype == 1 -> float16
|
#
|
# map from ftype to string
|
ftype_str = ["f32", "f16"]
|
|
ftype = 1
|
if len(sys.argv) > 2:
|
ftype = int(sys.argv[2])
|
if ftype < 0 or ftype > 1:
|
print("Invalid ftype: " + str(ftype))
|
sys.exit(1)
|
fname_out = dir_model + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True)
|
hparams = config.to_dict()
|
|
fout = open(fname_out, "wb")
|
|
fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex
|
fout.write(struct.pack("i", hparams["d_model"]))
|
fout.write(struct.pack("i", hparams["max_seq_len"]))
|
fout.write(struct.pack("i", hparams["n_heads"]))
|
fout.write(struct.pack("i", hparams["n_layers"]))
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"]))
|
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0))
|
fout.write(struct.pack("i", ftype))
|
|
vocab_size = hparams["vocab_size"]
|
|
encoder = tokenizer.vocab
|
# Add added_tokens (special tokens) to the encoder
|
encoder.update(tokenizer.get_added_vocab())
|
|
byte_encoder = bytes_to_unicode()
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
counter = 0
|
# sort by value
|
for key in sorted(encoder, key=encoder.get):
|
# workaround for key error when c not found
|
text = ""
|
for c in key:
|
if c not in byte_decoder:
|
text += c
|
else:
|
text += chr(byte_decoder[c])
|
text = bytearray(text, encoding="utf-8")
|
fout.write(struct.pack("i", len(text)))
|
fout.write(text)
|
counter += 1
|
|
# Repeat last token until vocab_size
|
while counter < vocab_size:
|
fout.write(struct.pack("i", len(text)))
|
fout.write(text)
|
counter += 1
|
|
if num_parts == 0:
|
part_names = ("pytorch_model.bin",)
|
else:
|
part_names = (
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
)
|
|
for part_name in part_names:
|
print(f"\n* Loading part: {part_name}")
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
for name in model_part.keys():
|
data = model_part[name].squeeze()
|
n_dims = len(data.shape)
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
# default type is fp32
|
ftype_cur = 0
|
if ftype == 1 and name[-7:] == ".weight" and n_dims > 1:
|
ftype_cur = 1
|
data = data.to(dtype=torch.float16 if ftype_cur == 1 else torch.float32).numpy()
|
|
print(
|
"Processing variable: " + name + " with shape: ",
|
data.shape,
|
"->",
|
data.dtype,
|
)
|
|
# header
|
str = name.encode("utf-8")
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
for i in range(n_dims):
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
fout.write(str)
|
|
# data
|
data.tofile(fout)
|
|
# release memory
|
del model_part
|
|
fout.close()
|
|
print("Done. Output file: " + fname_out)
|
print("")
|