from ggml import ffi, lib
|
from ggml.utils import init, numpy, copy
|
import numpy as np
|
from math import pi, cos, sin, ceil
|
|
import matplotlib.pyplot as plt
|
|
ctx = init(mem_size=100*1024*1024) # Will be auto-GC'd
|
n = 256
|
|
orig = np.array([
|
[
|
cos(j * 2 * pi / n) * (sin(i * 2 * pi / n))
|
for j in range(n)
|
]
|
for i in range(n)
|
], np.float32)
|
orig_tensor = lib.ggml_new_tensor_2d(ctx, lib.GGML_TYPE_F32, n, n)
|
copy(orig, orig_tensor)
|
|
quants = [
|
type for type in range(lib.GGML_TYPE_COUNT)
|
if lib.ggml_is_quantized(type) and
|
type not in [lib.GGML_TYPE_Q8_1, lib.GGML_TYPE_Q8_K] # Apparently not supported
|
]
|
# quants = [lib.GGML_TYPE_Q2_K] # Test a single one
|
|
def get_name(type):
|
name = lib.ggml_type_name(type)
|
return ffi.string(name).decode('utf-8') if name else '?'
|
|
quants.sort(key=get_name)
|
quants.insert(0, None)
|
print(quants)
|
|
ncols=4
|
nrows = ceil(len(quants) / ncols)
|
|
plt.figure(figsize=(ncols * 5, nrows * 5), layout='tight')
|
|
for i, type in enumerate(quants):
|
plt.subplot(nrows, ncols, i + 1)
|
try:
|
if type == None:
|
plt.title('Original')
|
plt.imshow(orig)
|
else:
|
quantized_tensor = lib.ggml_new_tensor_2d(ctx, type, n, n)
|
copy(orig_tensor, quantized_tensor)
|
quantized = numpy(quantized_tensor, allow_copy=True)
|
d = quantized - orig
|
results = {
|
"l2": np.linalg.norm(d, 2),
|
"linf": np.linalg.norm(d, np.inf),
|
"compression":
|
round(lib.ggml_nbytes(orig_tensor) /
|
lib.ggml_nbytes(quantized_tensor), 1)
|
}
|
name = get_name(type)
|
print(f'{name}: {results}')
|
|
plt.title(f'{name} ({results["compression"]}x smaller)')
|
plt.imshow(quantized, interpolation='nearest')
|
|
except Exception as e:
|
print(f'Error: {e}')
|
|
plt.show()
|