1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
| #include "ggml.h"
| #include "ggml/ggml-alloc.h"
| #include "ggml/ggml-backend.h"
|
| // #define GGML_USE_CUBLAS
|
| #ifdef GGML_USE_CUBLAS
| #include "ggml-cuda.h"
| #endif
|
| #ifdef GGML_USE_METAL
| #include "ggml-metal.h"
| #endif
|
| #include <cassert>
| #include <cmath>
| #include <cstdio>
| #include <cstring>
| #include <fstream>
| #include <map>
| #include <string>
| #include <vector>
|
| static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
| (void) level;
| (void) user_data;
| fputs(text, stderr);
| fflush(stderr);
| }
|
| struct test_model {
| struct ggml_tensor * a;
| struct ggml_tensor * b;
| ggml_backend_t backend = NULL;
| ggml_backend_buffer_t buffer;
| struct ggml_context * ctx;
| };
|
| void load_model(test_model & model, bool use_gpu = false) {
| // create data
| int KW = 3, KH = 3, IC = 10, OC = 10;
| int IW = 8, IH = 6, N = 1;
|
| // Initialize adata
| float * adata = new float[KW * KH * IC * OC];
| for (int i = 0; i < KW * KH * IC * OC; i++) {
| adata[i] = 2.5f;
| }
|
| // Convert adata to fp16 format
| std::vector<ggml_fp16_t> hadata(KW * KH * IC * OC);
| ggml_fp32_to_fp16_row(adata, hadata.data(), KW * KH * IC * OC);
|
| // Initialize bdata
| float * bdata = new float[IW * IH * IC * N];
| for (int i = 0; i < IW * IH * IC * N; i++) {
| bdata[i] = 1.5f;
| }
|
| size_t buffer_size = 0;
| {
| buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a
| buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
| buffer_size += 1024; // overhead
| }
|
| printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
| printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f));
|
| int num_tensors = 2;
| struct ggml_init_params params {
| /*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
| /*.mem_buffer =*/ NULL,
| /*.no_alloc =*/ true,
| };
|
| // initialize the backend
| #ifdef GGML_USE_CUBLAS
| if (use_gpu) {
| fprintf(stderr, "%s: using CUDA backend\n", __func__);
| model.backend = ggml_backend_cuda_init(0);
| if (!model.backend) {
| fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
| }
| }
| #endif
|
| #ifdef GGML_USE_METAL
| if (use_gpu) {
| fprintf(stderr, "%s: using Metal backend\n", __func__);
| ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
| model.backend = ggml_backend_metal_init();
| if (!model.backend) {
| fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
| }
| }
| #endif
|
| if(!model.backend) {
| // fallback to CPU backend
| model.backend = ggml_backend_cpu_init();
| }
|
| model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size);
|
| // create context
| model.ctx = ggml_init(params);
|
| // create tensors
| model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, IC, OC);
| model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N);
|
| // create a allocator
| ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer);
|
| // alloc memory
| ggml_allocr_alloc(alloc, model.a);
|
| // load data to buffer
| if(ggml_backend_is_cpu(model.backend)) {
| memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a));
| } else {
| ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a));
| }
|
| // alloc memory
| ggml_allocr_alloc(alloc, model.b);
|
| if(ggml_backend_is_cpu(model.backend)
| #ifdef GGML_USE_METAL
| || ggml_backend_is_metal(model.backend)
| #endif
| ) {
| memcpy(model.b->data, bdata, ggml_nbytes(model.b));
| } else {
| ggml_backend_tensor_set(model.b, bdata, 0, ggml_nbytes(model.b));
| }
|
| ggml_allocr_free(alloc);
| }
|
| struct ggml_cgraph * build_graph(const test_model& model, struct ggml_allocr * allocr) {
| static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
| static std::vector<uint8_t> buf(buf_size);
|
| struct ggml_init_params params0 = {
| /*.mem_size =*/ buf_size,
| /*.mem_buffer =*/ buf.data(),
| /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
| };
|
| // create a temporally context to build the graph
| struct ggml_context * ctx0 = ggml_init(params0);
|
| struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
| int s0 = 1;
| int s1 = 1;
| int p0 = 1;
| int p1 = 1;
| int d0 = 1;
| int d1 = 1;
|
| // split conv2d in fundamental methods for test unit
| struct ggml_tensor* im2col_0 = ggml_im2col(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1, true);
| ggml_set_name(im2col_0, "im2col_res");
| ggml_build_forward_expand(gf, im2col_0);
|
| // recalculate for avoid fragmentation
| struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
| ggml_set_name(conv2d_res, "conv2d_res");
| ggml_build_forward_expand(gf, conv2d_res);
|
| ggml_free(ctx0);
| return gf;
| }
|
| struct ggml_cgraph * compute_graph(const test_model & model, struct ggml_allocr * allocr) {
| // reset the allocator to free all the memory allocated during the previous inference
| ggml_allocr_reset(allocr);
|
| struct ggml_cgraph * gf = build_graph(model, allocr);
|
| // allocate tensors
| ggml_allocr_alloc_graph(allocr, gf);
| int n_threads = 1;
|
| if (ggml_backend_is_cpu(model.backend)) {
| ggml_backend_cpu_set_n_threads(model.backend, n_threads);
| }
|
| #ifdef GGML_USE_METAL
| if (ggml_backend_is_metal(model.backend)) {
| ggml_backend_metal_set_n_cb(model.backend, n_threads);
| }
| #endif
|
| ggml_backend_graph_compute(model.backend, gf);
|
| //ggml_graph_print(gf);
|
| return gf;
| }
|
| int main(void)
| {
| ggml_time_init();
|
| test_model model;
| load_model(model, true);
|
| ggml_backend_buffer_t buf_compute; // for compute
| struct ggml_allocr * allocr = NULL;
|
| {
| allocr = ggml_allocr_new_measure_from_backend(model.backend);
|
| //create the worst case graph for memory usage estimation
| struct ggml_cgraph * gf = build_graph(model, allocr);
| size_t mem_size = ggml_allocr_alloc_graph(allocr, gf);
| ggml_allocr_free(allocr);
|
| // compute the required memory
| buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size);
| allocr = ggml_allocr_new_from_buffer(buf_compute);
| fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
| }
|
| struct ggml_cgraph * gf_res = compute_graph(model, allocr);
|
| struct ggml_tensor * im2col_res = NULL;
| struct ggml_tensor * conv2d_res = NULL;
|
| for(int i = 0; i < gf_res->n_nodes; i++) {
| if(strcmp(ggml_get_name(gf_res->nodes[i]), "im2col_res") == 0) {
| im2col_res = gf_res->nodes[i];
| } else if(strcmp(ggml_get_name(gf_res->nodes[i]), "conv2d_res") == 0) {
| conv2d_res = gf_res->nodes[i];
| }
| }
|
| uint16_t* im2col_data = new uint16_t[ggml_nelements(im2col_res)];
| float* conv2d_data = new float[ggml_nelements(conv2d_res)];
|
| ggml_backend_tensor_get(im2col_res, im2col_data, 0, ggml_nbytes(im2col_res));
| ggml_backend_tensor_get(conv2d_res, conv2d_data, 0, ggml_nbytes(conv2d_res));
|
| const int n_conv2d_test = 480;
| const int n_im2col_test = 4320;
|
| float expected_conv2d [n_conv2d_test] = {
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f,
| 150.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 225.00f, 150.00f };
|
| uint16_t expected_im2col[n_conv2d_test] = {
| 0, 0, 0, 0, 15872, 15872, 0, 15872,
| 15872, 0, 0, 0, 0, 15872, 15872, 0,
| 15872, 15872, 0, 0, 0, 0, 15872, 15872,
| 0, 15872, 15872, 0, 0, 0, 0, 15872,
| 15872, 0, 15872, 15872, 0, 0, 0, 0,
| 15872, 15872, 0, 15872, 15872, 0, 0, 0,
| 0, 15872, 15872, 0, 15872, 15872, 0, 0,
| 0, 0, 15872, 15872, 0, 15872, 15872, 0,
| 0, 0, 0, 15872, 15872, 0, 15872, 15872,
| 0, 0, 0, 0, 15872, 15872, 0, 15872,
| 15872, 0, 0, 0, 0, 15872, 15872, 0,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0,
| 15872, 15872, 15872, 15872, 15872, 15872, 0, 0,
| 0, 15872, 15872, 15872, 15872, 15872, 15872, 0,
| 0, 0, 15872, 15872, 15872, 15872, 15872, 15872,
| 0, 0, 0, 15872, 15872, 15872, 15872, 15872,
| 15872, 0, 0, 0, 15872, 15872, 15872, 15872,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0,
| 15872, 15872, 15872, 15872, 15872, 15872, 0, 0,
| 0, 15872, 15872, 15872, 15872, 15872, 15872, 0,
| 0, 0, 15872, 15872, 15872, 15872, 15872, 15872,
| 0, 0, 0, 15872, 15872, 15872, 15872, 15872,
| 15872, 0, 0, 0, 15872, 15872, 15872, 15872,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0,
| 15872, 15872, 15872, 15872, 15872, 15872, 0, 0,
| 0, 15872, 15872, 15872, 15872, 15872, 15872, 0,
| 0, 0, 15872, 15872, 15872, 15872, 15872, 15872,
| 0, 0, 0, 15872, 15872, 15872, 15872, 15872,
| 15872, 0, 0, 0, 15872, 15872, 15872, 15872,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0,
| 15872, 15872, 15872, 15872, 15872, 15872, 0, 0,
| 0, 15872, 15872, 15872, 15872, 15872, 15872, 0,
| 0, 0, 15872, 15872, 15872, 15872, 15872, 15872,
| 0, 0, 0, 15872, 15872, 15872, 15872, 15872,
| 15872, 0, 0, 0, 15872, 15872, 15872, 15872,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0,
| 15872, 15872, 15872, 15872, 15872, 15872, 0, 0,
| 0, 15872, 15872, 15872, 15872, 15872, 15872, 0,
| 0, 0, 15872, 15872, 15872, 15872, 15872, 15872,
| 0, 0, 0, 15872, 15872, 15872, 15872, 15872,
| 15872, 0, 0, 0, 15872, 15872, 15872, 15872,
| 15872, 15872, 0, 0, 0, 15872, 15872, 15872,
| 15872, 15872, 15872, 0, 0, 0, 15872, 15872,
| 15872, 15872, 15872, 15872, 0, 0, 0, 15872,
| 15872, 15872, 15872, 15872, 15872, 0, 0, 0
| };
|
| printf("\nPerforming test:\n");
|
| bool passed = true;
| for(int i = 0; i < n_conv2d_test; i++) {
| if(
| im2col_data[i] != expected_im2col[i]) {
| passed = false;
| break;
| }
| }
|
| printf("ggml_im2col (%d): %s\n", (int) ggml_nelements(im2col_res), passed && (ggml_nelements(im2col_res) == n_im2col_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m");
|
| passed = true;
| for(int i = 0; i < n_conv2d_test; i++) {
| if(conv2d_data[i] != expected_conv2d[i]) {
| passed = false;
| break;
| }
| }
|
| printf("ggml_conv2d (%d): %s\n", (int) ggml_nelements(conv2d_res), passed && (ggml_nelements(conv2d_res) == n_conv2d_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m");
|
| ggml_free(model.ctx);
|
| ggml_backend_buffer_free(model.buffer);
| ggml_backend_buffer_free(buf_compute);
| ggml_backend_free(model.backend);
| return 0;
| }
|
|