#include "ggml/ggml.h"
|
|
#include <string.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
|
struct ggml_context* make_ctx(void) {
|
struct ggml_init_params params = {
|
.mem_size = 2 * 1024 * 1024,
|
};
|
|
return ggml_init(params);
|
}
|
|
int main(int argc, const char** argv) {
|
|
float buf_f32[1024];
|
for (int i = 0; i < 1024; ++i) {
|
buf_f32[i] = (float)(i + 1);
|
}
|
|
// avg pool 1d
|
{
|
struct ggml_context * ctx = make_ctx();
|
struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
|
memcpy(t->data, buf_f32, ggml_nbytes(t));
|
|
struct ggml_tensor * t_pooled = ggml_pool_1d(ctx, t, GGML_OP_POOL_AVG, 3, 3, 0);
|
GGML_ASSERT(t_pooled->ne[0] == 3);
|
GGML_ASSERT(t_pooled->ne[1] == 2);
|
GGML_ASSERT(t_pooled->ne[2] == 1);
|
|
struct ggml_cgraph * graph = ggml_new_graph(ctx);
|
ggml_build_forward_expand(graph, t_pooled);
|
|
ggml_graph_compute_with_ctx(ctx, graph, 4);
|
|
const float * output = ggml_get_data_f32(t_pooled);
|
|
GGML_ASSERT(output[0] == 2);
|
GGML_ASSERT(output[1] == 5);
|
GGML_ASSERT(output[2] == 8);
|
GGML_ASSERT(output[3] == 12);
|
GGML_ASSERT(output[4] == 15);
|
GGML_ASSERT(output[5] == 18);
|
|
ggml_free(ctx);
|
}
|
|
// max pool 1d
|
{
|
struct ggml_context * ctx = make_ctx();
|
struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
|
memcpy(t->data, buf_f32, ggml_nbytes(t));
|
|
struct ggml_tensor * t_pooled = ggml_pool_1d(ctx, t, GGML_OP_POOL_MAX, 3, 3, 0);
|
GGML_ASSERT(t_pooled->ne[0] == 3);
|
GGML_ASSERT(t_pooled->ne[1] == 2);
|
GGML_ASSERT(t_pooled->ne[2] == 1);
|
|
struct ggml_cgraph * graph = ggml_new_graph(ctx);
|
ggml_build_forward_expand(graph, t_pooled);
|
|
ggml_graph_compute_with_ctx(ctx, graph, 4);
|
|
const float * output = ggml_get_data_f32(t_pooled);
|
GGML_ASSERT(output[0] == 3);
|
GGML_ASSERT(output[1] == 6);
|
GGML_ASSERT(output[2] == 9);
|
GGML_ASSERT(output[3] == 13);
|
GGML_ASSERT(output[4] == 16);
|
GGML_ASSERT(output[5] == 19);
|
|
ggml_free(ctx);
|
}
|
|
// avg pool 2d
|
{
|
struct ggml_context * ctx = make_ctx();
|
struct ggml_tensor * t = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 10, 10, 2);
|
memcpy(t->data, buf_f32, ggml_nbytes(t));
|
|
struct ggml_tensor * t_pooled = ggml_pool_2d(ctx, t, GGML_OP_POOL_AVG, 3, 4, 3, 4, 0, 0);
|
GGML_ASSERT(t_pooled->ne[0] == 3);
|
GGML_ASSERT(t_pooled->ne[1] == 2);
|
GGML_ASSERT(t_pooled->ne[2] == 2);
|
GGML_ASSERT(t_pooled->ne[3] == 1);
|
|
struct ggml_cgraph * graph = ggml_new_graph(ctx);
|
ggml_build_forward_expand(graph, t_pooled);
|
|
ggml_graph_compute_with_ctx(ctx, graph, 4);
|
|
const float * output = ggml_get_data_f32(t_pooled);
|
GGML_ASSERT(output[0] == 17);
|
GGML_ASSERT(output[1] == 20);
|
GGML_ASSERT(output[2] == 23);
|
GGML_ASSERT(output[3] == 57);
|
GGML_ASSERT(output[4] == 60);
|
GGML_ASSERT(output[5] == 63);
|
GGML_ASSERT(output[6] == 117);
|
GGML_ASSERT(output[7] == 120);
|
GGML_ASSERT(output[8] == 123);
|
GGML_ASSERT(output[9] == 157);
|
GGML_ASSERT(output[10] == 160);
|
GGML_ASSERT(output[11] == 163);
|
|
|
ggml_free(ctx);
|
}
|
|
// max pool 2d
|
{
|
struct ggml_context * ctx = make_ctx();
|
struct ggml_tensor * t = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 10, 10, 2);
|
memcpy(t->data, buf_f32, ggml_nbytes(t));
|
|
struct ggml_tensor * t_pooled = ggml_pool_2d(ctx, t, GGML_OP_POOL_MAX, 3, 4, 3, 4, 0, 0);
|
GGML_ASSERT(t_pooled->ne[0] == 3);
|
GGML_ASSERT(t_pooled->ne[1] == 2);
|
GGML_ASSERT(t_pooled->ne[2] == 2);
|
GGML_ASSERT(t_pooled->ne[3] == 1);
|
|
struct ggml_cgraph * graph = ggml_new_graph(ctx);
|
ggml_build_forward_expand(graph, t_pooled);
|
|
ggml_graph_compute_with_ctx(ctx, graph, 4);
|
|
const float * output = ggml_get_data_f32(t_pooled);
|
GGML_ASSERT(output[0] == 33);
|
GGML_ASSERT(output[1] == 36);
|
GGML_ASSERT(output[2] == 39);
|
GGML_ASSERT(output[3] == 73);
|
GGML_ASSERT(output[4] == 76);
|
GGML_ASSERT(output[5] == 79);
|
GGML_ASSERT(output[6] == 133);
|
GGML_ASSERT(output[7] == 136);
|
GGML_ASSERT(output[8] == 139);
|
GGML_ASSERT(output[9] == 173);
|
GGML_ASSERT(output[10] == 176);
|
GGML_ASSERT(output[11] == 179);
|
|
ggml_free(ctx);
|
}
|
|
return 0;
|
}
|