#include "ggml/ggml.h"
|
|
#include <math.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
|
bool is_close(float a, float b, float epsilon) {
|
return fabs(a - b) < epsilon;
|
}
|
|
int main(int argc, char ** argv) {
|
const int n_threads = 1;
|
const int n_embd_head = 4; // aka head_dim
|
const int n_head = 1;
|
const int N = 8;
|
|
struct ggml_init_params params = {
|
.mem_size = 16*1024*1024,
|
.mem_buffer = NULL,
|
};
|
|
// memory allocation happens here
|
struct ggml_context * ctx = ggml_init(params);
|
|
struct ggml_tensor * Q = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, N);
|
struct ggml_tensor * K = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, N);
|
|
for (int i = 0; i < ggml_nelements(Q); i++) {
|
((float*) Q->data)[i] = 2.0f;
|
((float*) K->data)[i] = 2.0f;
|
}
|
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
int * data = (int *) KQ_pos->data;
|
for (int i = 0; i < N; ++i) {
|
data[i] = 1 + i;
|
}
|
|
struct ggml_tensor * Qx = ggml_rope_xpos_inplace(ctx, Q, KQ_pos, n_embd_head, 512.0f, false);
|
struct ggml_tensor * Kx = ggml_rope_xpos_inplace(ctx, K, KQ_pos, n_embd_head, 512.0f, true);
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
ggml_build_forward_expand(gf, Qx);
|
ggml_build_forward_expand(gf, Kx);
|
ggml_graph_compute_with_ctx(ctx, gf, n_threads);
|
|
// expected output for Qx:
|
// -0.6009 2.7568 1.9782 2.0182
|
// -2.6379 0.9815 1.9562 2.0361
|
// -2.2457 -1.6853 1.9341 2.0538
|
// 0.2043 -2.7934 1.9118 2.0712
|
// 2.4550 -1.3341 1.8894 2.0884
|
// 2.4430 1.3417 1.8668 2.1054
|
// 0.1905 2.7739 1.8440 2.1221
|
// -2.2257 1.6550 1.8212 2.1386
|
|
for (int i = 0; i < ggml_nelements(Q); i++) {
|
if (((float*) Qx->data)[i] > 0) printf(" ");
|
printf("%.4f ", ((float*) Qx->data)[i]);
|
if ((i+1) % n_embd_head == 0) printf("\n");
|
}
|
printf("\n");
|
|
GGML_ASSERT(is_close(((float*) Qx->data)[7 * n_embd_head + 0], -2.2257f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Qx->data)[7 * n_embd_head + 1], 1.6550f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Qx->data)[7 * n_embd_head + 2], 1.8212f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Qx->data)[7 * n_embd_head + 3], 2.1386f, 0.0001f));
|
|
// expected output for Kx:
|
// -0.6038 2.7703 1.9816 2.0216
|
// -2.6639 0.9911 1.9630 2.0431
|
// -2.2789 -1.7103 1.9441 2.0644
|
// 0.2083 -2.8486 1.9251 2.0856
|
// 2.5158 -1.3671 1.9057 2.1065
|
// 2.5158 1.3816 1.8862 2.1273
|
// 0.1972 2.8705 1.8665 2.1479
|
// -2.3146 1.7211 1.8465 2.1684
|
|
for (int i = 0; i < ggml_nelements(K); i++) {
|
if (((float*) Kx->data)[i] > 0) printf(" ");
|
printf("%.4f ", ((float*) Kx->data)[i]);
|
if ((i+1) % n_embd_head == 0) printf("\n");
|
}
|
printf("\n");
|
|
GGML_ASSERT(is_close(((float*) Kx->data)[7 * n_embd_head + 0], -2.3146f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Kx->data)[7 * n_embd_head + 1], 1.7211f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Kx->data)[7 * n_embd_head + 2], 1.8465f, 0.0001f));
|
GGML_ASSERT(is_close(((float*) Kx->data)[7 * n_embd_head + 3], 2.1684f, 0.0001f));
|
|
ggml_free(ctx);
|
|
return 0;
|
}
|