fszontagh
2024-02-24 5a7568be177b7557b811c1b50edc3479e84a5a20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include "esrgan.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#include "stable-diffusion.h"
 
struct UpscalerGGML {
    ggml_backend_t backend    = NULL;  // general backend
    ggml_type model_data_type = GGML_TYPE_F16;
    std::shared_ptr<ESRGAN> esrgan_upscaler;
    std::string esrgan_path;
    int n_threads;
 
    UpscalerGGML(int n_threads)
        : n_threads(n_threads) {
    }
 
    bool load_from_file(const std::string& esrgan_path) {
#ifdef SD_USE_CUBLAS
        LOG_DEBUG("Using CUDA backend");
        backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
        LOG_DEBUG("Using Metal backend");
        ggml_metal_log_set_callback(ggml_log_callback_default, nullptr);
        backend = ggml_backend_metal_init();
#endif
 
        if (!backend) {
            LOG_DEBUG("Using CPU backend");
            backend = ggml_backend_cpu_init();
        }
        LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
        esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_data_type);
        if (!esrgan_upscaler->load_from_file(esrgan_path)) {
            return false;
        }
        return true;
    }
 
    sd_image_t upscale(sd_image_t input_image, uint32_t upscale_factor) {
        // upscale_factor, unused for RealESRGAN_x4plus_anime_6B.pth
        sd_image_t upscaled_image = {0, 0, 0, NULL};
        int output_width          = (int)input_image.width * esrgan_upscaler->scale;
        int output_height         = (int)input_image.height * esrgan_upscaler->scale;
        LOG_INFO("upscaling from (%i x %i) to (%i x %i)",
                 input_image.width, input_image.height, output_width, output_height);
 
        struct ggml_init_params params;
        params.mem_size = output_width * output_height * 3 * sizeof(float) * 2;
        params.mem_size += 2 * ggml_tensor_overhead();
        params.mem_buffer = NULL;
        params.no_alloc   = false;
 
        // draft context
        struct ggml_context* upscale_ctx = ggml_init(params);
        if (!upscale_ctx) {
            LOG_ERROR("ggml_init() failed");
            return upscaled_image;
        }
        LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
        ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1);
        sd_image_to_tensor(input_image.data, input_image_tensor);
 
        ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1);
        auto on_tiling        = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
            esrgan_upscaler->compute(n_threads, in, &out);
        };
        int64_t t0 = ggml_time_ms();
        sd_tiling(input_image_tensor, upscaled, esrgan_upscaler->scale, esrgan_upscaler->tile_size, 0.25f, on_tiling);
        esrgan_upscaler->free_compute_buffer();
        ggml_tensor_clamp(upscaled, 0.f, 1.f);
        uint8_t* upscaled_data = sd_tensor_to_image(upscaled);
        ggml_free(upscale_ctx);
        int64_t t3 = ggml_time_ms();
        LOG_INFO("input_image_tensor upscaled, taking %.2fs", (t3 - t0) / 1000.0f);
        upscaled_image = {
            (uint32_t)output_width,
            (uint32_t)output_height,
            3,
            upscaled_data,
        };
        return upscaled_image;
    }
};
 
struct upscaler_ctx_t {
    UpscalerGGML* upscaler = NULL;
};
 
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
                                 int n_threads,
                                 enum sd_type_t wtype) {
    upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
    if (upscaler_ctx == NULL) {
        return NULL;
    }
    std::string esrgan_path(esrgan_path_c_str);
 
    upscaler_ctx->upscaler = new UpscalerGGML(n_threads);
    if (upscaler_ctx->upscaler == NULL) {
        return NULL;
    }
 
    if (!upscaler_ctx->upscaler->load_from_file(esrgan_path)) {
        delete upscaler_ctx->upscaler;
        upscaler_ctx->upscaler = NULL;
        free(upscaler_ctx);
        return NULL;
    }
    return upscaler_ctx;
}
 
sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor) {
    return upscaler_ctx->upscaler->upscale(input_image, upscale_factor);
}
 
void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx) {
    if (upscaler_ctx->upscaler != NULL) {
        delete upscaler_ctx->upscaler;
        upscaler_ctx->upscaler = NULL;
    }
    free(upscaler_ctx);
}