This example shows how to implement YOLO object detection with ggml using pretrained model. # YOLOv3-tiny Download the model weights: ```bash $ wget https://pjreddie.com/media/files/yolov3-tiny.weights $ sha1sum yolov3-tiny.weights 40f3c11883bef62fd850213bc14266632ed4414f yolov3-tiny.weights ``` Convert the weights to GGUF format: ```bash $ ./convert-yolov3-tiny.py yolov3-tiny.weights yolov3-tiny.weights converted to yolov3-tiny.gguf ``` Object detection: ```bash $ wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/dog.jpg $ ./yolov3-tiny -m yolov3-tiny.gguf -i dog.jpg Layer 0 output shape: 416 x 416 x 16 x 1 Layer 1 output shape: 208 x 208 x 16 x 1 Layer 2 output shape: 208 x 208 x 32 x 1 Layer 3 output shape: 104 x 104 x 32 x 1 Layer 4 output shape: 104 x 104 x 64 x 1 Layer 5 output shape: 52 x 52 x 64 x 1 Layer 6 output shape: 52 x 52 x 128 x 1 Layer 7 output shape: 26 x 26 x 128 x 1 Layer 8 output shape: 26 x 26 x 256 x 1 Layer 9 output shape: 13 x 13 x 256 x 1 Layer 10 output shape: 13 x 13 x 512 x 1 Layer 11 output shape: 13 x 13 x 512 x 1 Layer 12 output shape: 13 x 13 x 1024 x 1 Layer 13 output shape: 13 x 13 x 256 x 1 Layer 14 output shape: 13 x 13 x 512 x 1 Layer 15 output shape: 13 x 13 x 255 x 1 Layer 18 output shape: 13 x 13 x 128 x 1 Layer 19 output shape: 26 x 26 x 128 x 1 Layer 20 output shape: 26 x 26 x 384 x 1 Layer 21 output shape: 26 x 26 x 256 x 1 Layer 22 output shape: 26 x 26 x 255 x 1 dog: 57% car: 52% truck: 56% car: 62% bicycle: 59% Detected objects saved in 'predictions.jpg' (time: 0.357000 sec.) ```