#include "ggml.h" #include "ggml/ggml-alloc.h" #include "ggml/ggml-backend.h" // #define GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #include #include #include #include #include #include #include #include static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); } struct test_model { struct ggml_tensor * a; struct ggml_tensor * b; ggml_backend_t backend = NULL; ggml_backend_buffer_t buffer; struct ggml_context * ctx; }; void load_model(test_model & model, bool use_gpu = false) { // create data int K = 3, IC = 10, OC = 10; int IL = 8, N = 1; // Initialize adata float * adata = new float[K * IC * OC]; for (int i = 0; i < K * IC * OC; i++) { adata[i] = 4.5f; } // Convert adata to fp16 format std::vector hadata(K * IC * OC); ggml_fp32_to_fp16_row(adata, hadata.data(), K * IC * OC); // Initialize bdata float * bdata = new float[IL * IC * N]; for (int i = 0; i < IL * IC * N; i++) { bdata[i] = 2.5f; } size_t buffer_size = 0; { buffer_size += K * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a buffer_size += IL * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b buffer_size += 1024; // overhead } printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f)); int num_tensors = 2; struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; // initialize the backend #ifdef GGML_USE_CUBLAS if (use_gpu) { fprintf(stderr, "%s: using CUDA backend\n", __func__); model.backend = ggml_backend_cuda_init(0); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } } #endif #ifdef GGML_USE_METAL if (use_gpu) { fprintf(stderr, "%s: using Metal backend\n", __func__); ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr); model.backend = ggml_backend_metal_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } } #endif if(!model.backend) { // fallback to CPU backend model.backend = ggml_backend_cpu_init(); } model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size); // create context model.ctx = ggml_init(params); // create tensors model.a = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F16, K, IC, OC); model.b = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, IL, IC, N); // create a allocator ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer); // alloc memory ggml_allocr_alloc(alloc, model.a); // load data to buffer if(ggml_backend_is_cpu(model.backend)) { memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a)); } else { ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a)); } // alloc memory ggml_allocr_alloc(alloc, model.b); if(ggml_backend_is_cpu(model.backend) #ifdef GGML_USE_METAL || ggml_backend_is_metal(model.backend) #endif ) { memcpy(model.b->data, bdata, ggml_nbytes(model.b)); } else { ggml_backend_tensor_set(model.b, bdata, 0, ggml_nbytes(model.b)); } ggml_allocr_free(alloc); } struct ggml_cgraph * build_graph(const test_model& model, struct ggml_allocr * allocr) { static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params0 = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; // create a temporally context to build the graph struct ggml_context * ctx0 = ggml_init(params0); struct ggml_cgraph * gf = ggml_new_graph(ctx0); int s0 = 1; int p0 = 1; int d0 = 1; // split conv1d in fundamental methods for test unit struct ggml_tensor* im2col_0 = ggml_im2col(ctx0, model.a, model.b, s0, 0, p0, 0, d0, 0, false); ggml_set_name(im2col_0, "im2col_res"); ggml_build_forward_expand(gf, im2col_0); struct ggml_tensor* conv1d_res = ggml_conv_1d(ctx0, model.a, model.b, s0, p0, d0); ggml_set_name(conv1d_res, "conv1d_res"); ggml_build_forward_expand(gf, conv1d_res); // delete the temporally context used to build the graph ggml_free(ctx0); return gf; } struct ggml_cgraph* compute_graph(const test_model & model, struct ggml_allocr * allocr) { // reset the allocator to free all the memory allocated during the previous inference ggml_allocr_reset(allocr); struct ggml_cgraph * gf = build_graph(model, allocr); // allocate tensors ggml_allocr_alloc_graph(allocr, gf); int n_threads = 1; if (ggml_backend_is_cpu(model.backend)) { ggml_backend_cpu_set_n_threads(model.backend, n_threads); } #ifdef GGML_USE_METAL if (ggml_backend_is_metal(model.backend)) { ggml_backend_metal_set_n_cb(model.backend, n_threads); } #endif ggml_backend_graph_compute(model.backend, gf); //ggml_graph_print(gf); return gf; } int main(void) { ggml_time_init(); test_model model; load_model(model, true); ggml_backend_buffer_t buf_compute; // for compute struct ggml_allocr * allocr = NULL; { allocr = ggml_allocr_new_measure_from_backend(model.backend); //create the worst case graph for memory usage estimation struct ggml_cgraph * gf = build_graph(model, allocr); size_t mem_size = ggml_allocr_alloc_graph(allocr, gf); ggml_allocr_free(allocr); // compute the required memory buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size); allocr = ggml_allocr_new_from_buffer(buf_compute); fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f); } struct ggml_cgraph * gf_res = compute_graph(model, allocr); struct ggml_tensor * im2col_res = NULL; struct ggml_tensor * conv1d_res = NULL; for(int i = 0; i < gf_res->n_nodes; i++) { if(strcmp(ggml_get_name(gf_res->nodes[i]), "im2col_res") == 0) { im2col_res = gf_res->nodes[i]; } else if(strcmp(ggml_get_name(gf_res->nodes[i]), "conv1d_res") == 0) { conv1d_res = gf_res->nodes[i]; } } uint16_t* im2col_data = new uint16_t[ggml_nelements(im2col_res)]; float* conv2d_data = new float[ggml_nelements(conv1d_res)]; ggml_backend_tensor_get(im2col_res, im2col_data, 0, ggml_nbytes(im2col_res)); ggml_backend_tensor_get(conv1d_res, conv2d_data, 0, ggml_nbytes(conv1d_res)); const int n_conv1d_test = 80; const int n_im2col_test = 240; float expected_conv1d[n_conv1d_test] = { 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f, 225.00f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 337.50f, 225.00f }; // first im2col test uint16_t expected_im2col[n_conv1d_test] = { 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 0, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640, 16640 }; printf("\nPerforming test:\n"); bool passed = true; for(int i = 0; i < n_conv1d_test; i++) { if( im2col_data[i] != expected_im2col[i]) { passed = false; break; } } printf("ggml_im2col (%d): %s\n", (int) ggml_nelements(im2col_res), passed && (ggml_nelements(im2col_res) == n_im2col_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m"); passed = true; for(int i = 0; i < n_conv1d_test; i++) { if(conv2d_data[i] != expected_conv1d[i]) { passed = false; break; } } printf("ggml_conv1d (%d): %s\n", (int) ggml_nelements(conv1d_res), passed && (ggml_nelements(conv1d_res) == n_conv1d_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m"); ggml_free(model.ctx); ggml_backend_buffer_free(model.buffer); ggml_backend_buffer_free(buf_compute); ggml_backend_free(model.backend); return 0; }